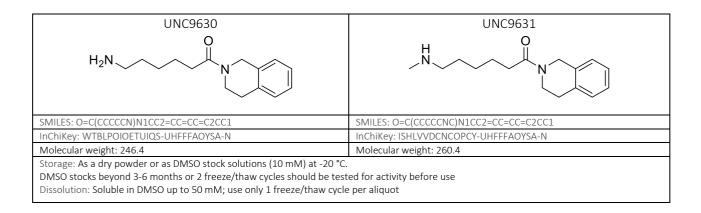


UNC9630: A chemical handle for FBXO22

Version 1.0 (24th April 2025)

Web link for more details: https://www.thesgc.org/index.php/chemical-handles/unc9630


Overview

SGC in collaboration with Lindsey James' lab at the University of North Carolina at Chapel Hill (UNC) has developed a chemical handle for FBXO22, UNC9630. The handle is an amine pro-drug.

Summary

Chemical handle name	UNC9630
Negative control compound	UNC9631
Target(s) (synonyms)	FBXO22 (FBX22)
Recommended in vitro assay concentration	N/A
Suitability for <i>in</i> vivo use and recommended dose	Handles are not for in vivo use
Publications	https://doi.org/10.1038/s41589-024-01660-y,
	https://doi.org/10.1021/jacs.3c01421
Related chemical probe degrader	UNC8732
In vitro assay(s) used to characterise	Thermal stability
Cellular assay(s) for target-engagement	In cell western
ChemicalProbes.org	

Chemical Handle Structure and Use

Chemical Handle Profile

In vitro Potency & Selectivity: UNC9630 is an amine prodrug. To demonstrate binding in cell free conditions, a surrogate bisulfite prodrug UNC10089 was used. UNC10089 stabilizes SKP1/FBXO22 (complex) and FBXO22's FIST_C domain in a dose-dependent manner; 100 μ M of UNC10089 stabilizes SKP1/FBXO22 by 4 °C, and the FIST_C domain by 4.8 °C.

Potency in Cells and Cellular Target Engagement: An in-cell western shows that UNC9630 competes with UNC8732 (an NSD2 degrader that employs the UNC9630 handle) for binding to FBXO22, and blocks NSD2 degradation. FBXO22 knockdown abolishes UNC8732 mediated degradation.