A-446: A Chemical Probe for GLS

Version 1.1 (7th July 2021)

Web link for more details: https://www.sgc-ffm.uni-frankfurt.de/#!specificprobeoverview/A-446

Overview

The aminohydrolase <u>GLS</u> is responsible for the conversion of glutamine to glutamate. There are multiple glutaminase isoforms in humans. The splice variant GAC of GLS, the kidney isoform, is overexpressed in many cancer cell lines. GLS inhibition has been targeted as a potential oncology therapy based on the hypothesis that inhibition can selectively starve cancer cells.

Summary

Chemical Probe Name	A-446
Negative control compound	A-426
Target(s) (synonyms)	GLS (Glutaminase, GLS1)
Recommended in vitro assay concentration	Use at concentration of 10 nM for A-446 and A-426; use
	with control for best interpretation of data
Suitability for in vivo use and recommended	Tested in mice with 50 - 200 mg/kg BID. A-446 showed
dose	moderate dose dependent tumor growth inhibition across
	multiple lung cancer cell lines in mouse xenograft studies.
Publications	None at time of writing
Orthogonal chemical probes	
In vitro assay(s) used to characterise	GAC enzyme activity assay
Cellular assay(s) for target-engagement	CTG assay in A549 cells

Chemical Probe & Negative Control Structures and Use

SMILES: CC[C@@H]1CN(CCN1c1cccnn1)c1nnc(NC(Cc2ccccc2)=O)s1

Storage: As a dry powder or as DMSO stock solutions (10 mM) at -20 °C.

DMSO stocks beyond 3-6 months or 2 freeze/thaw cycles should be tested for

Dissolution: Soluble in DMSO up to 10 mM; use only 1 freeze/thaw cycle per

InChiKey: YZQFDCMJURBEKW-MRXNPFEDSA-N

SMILES:

[H][C@@]12CCN(c3nnc(NC(Cc4cccc4)=O)s3)[C@]1([H])CN2c1cccnn1
InChiKey: VCDTXROFDBHEIP-HUUCEWRRSA-N
Molecular weight: 393.14
Storage: As a dry powder or as DMSO stock solutions (10 mM) at -20 °C.
DMSO stocks beyond 3-6 months or 2 freeze/thaw cycles should be tested for activity before use
Dissolution: Soluble in DMSO up to 10 mM; use only 1 freeze/thaw cycle per aliguot

Chemical Probe Profile

Molecular weight: 409.17

activity before use

aliguot

In vitro Potency & Selectivity:

A-446 shows potent activity in the GAC (GLS) enzyme activity assay ($IC_{50} = 31 \text{ nM}$). It is selective within the target family with >1000-fold selectivity versus GLS2 ($IC_{50} > 30 \mu$ M; GLS2 enzyme activity assay). Closest off-targets in the CEREP binding assay at 10 μ M [% inhibition of control specific binding] are ADORA3 (agonist radioligand; 76.6 %), CHRM1 (antagonist radioligand; 92.6 %) and CHRM2 (antagonist radioligand; 71.5 %). The control A-426 is > 100-fold less active in the GLS enzyme activity assay ($IC_{50} > 30 \mu$ M) and GLS2 enzyme activity assay ($IC_{50} > 30 \mu$ M).

Potency in Cells and Cellular Target Engagement:

A-446 is potent in the CTG assay in A549 cells with $IC_{50} = 11 \text{ nM}$.