CK156: A Chemical Probe for DRAK1

Version 1.0 (11th October 2021)

Web link for more details: https://www.thesgc.org/chemical-probes/CK156

Overview

DAP Kinase-Related Apoptosis-Inducing Protein Kinase 1 (DRAK1) is part of the DAPK (death-associated protein kinases) family, which comprises of four members (DAPK1–3 and DRAK2). Both, DRAK1 and DRAK2, belong to the so-called dark kinome and their cellular function is widely unknown. However, recent findings indicate that DRAK1 might play a role in different cancer diseases such as glioblastoma multiforme (GBM) or head and neck squamous cell carcinoma (HNSCC).

Summary

Chemical Probe Name	CK156
Negative control compound	CKJB71
Target(s) (synonyms)	DRAK1 (DAP Kinase-Related Apoptosis-Inducing Protein Kinase 1)/ STK17A (Serine/threonine-protein kinase 17A)
Recommended cell assay concentration	Use at concentration of 1 μ M (and \leq 10 μ M) for CK156 and CKJB71; use with control for best interpretation of data.
Suitability for <i>in</i> vivo use and recommended dose	CK156 was not tested in vivo.
Publications	
Orthogonal chemical probes	
In vitro assay(s) used to characterise	DSF, ITC, Radiometric inhibition assay
Cellular assay(s) for target-engagement	NanoBRET™

Chemical Probe & Negative Control Structures and Use

SMILES: O=C(NC(C)(C)C)C1=CC=C2C=C1OCCOCCNC3=NC4=C2C=NN4C=C3 InChiKey: YCFFONJEHNSECY-UHFFFAOYSA-N

Molecular weight: 395.46

Storage Stable as solid in the dark at -20°C. NB making aliquots rather than freeze-thawing is recommended

Dissolution: Soluble in DMSO up to 10 mM; use only 1 freeze/thaw cycle per aliquot

SMILES: O=C(N1CCN(C)CC1)C2=CC=C3C=C2OCCOCCNC4=NC5=C3C=NN5C=C4 InChiKey: DDXOMWWURGFLKK-UHFFFAOYSA-N

Molecular weight: 422.49 Storage: Stable as solid in the dark at -20°C. NB making aliquots rather than freeze-thawing is recommended

Dissolution: Soluble in DMSO up to 10 mM; use only 1 freeze/thaw cycle per aliquot

Chemical Probe Profile

In vitro Potency & Selectivity:

The binding of CK156 towards DRAK1 was determined by DSF (11.3 K) and confirmed by ITC with an K_D of 21 nM. The potency of CK156 was determined on a radiometric assay ³³PanQinase Activity Assay (ProQinase) with an IC₅₀ of 49 nM at an ATP concentration of 0.1 μ M. CK156 has been shown to be selective in the scanMAX[®] Panel from DiscoverX against 468 Kinases at two different concentrations (1 μ M and 100 nM). The closest cellular off-target was BMP2K (IC₅₀ = 8 μ M) and STK17B (IC₅₀ = 8 μ M).

Potency in Cells and Cellular Target Engagement:

In NanoBRET assay using HEK293T cells CK156 displayed an IC₅₀ of 181 nM in intact cells respectively 69 nM in the lysed cells.

The cytotoxicity of CK156 was assessed in a high content screen using a confocal microscope (CQ1, Yokogawa) measured in three different cell lines (HEK293T, U2OS and MRC-9 fibroblasts). CK156 showed no cytotoxicity up to 10 μ M in HEK293T and MRC9 cells and just minor cytotoxicity at 10 μ M in U2OS cells after 36 h.