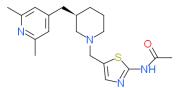
JNJ-65355394: A Chemical Probe for OGA

Version 1.0 (21th October 2021)

Web link for more details: https://www.sgc-ffm.uni-frankfurt.de/#!specificprobeoverview/JNJ-65355394

Overview


OGA, a member of the family of hexosaminidases, catalyzes the removal of the O-GlcNAc post-translational modification from serine and threonine. OGA activity is the highest at neutral pH and it localizes mainly to the cytosol. OGlcNAc plays an important role in the aggregation of the tau protein as found in neurodegenerative disorders, such as Alzheimer's disease, Pick's disease, and Parkinson's disease. O-GlcNAcylated tau protein displays improved stability and solubility compared with its unmodified state, which in turn leads to a suppression of the aggregation of OGA may prevent the formation of aggregations.

Summary

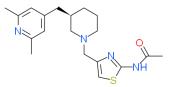
Chemical Probe Name	JNJ-65355394
Negative control compound	JNJ-73924149
Target(s) (synonyms)	OGA (O-GlcNAcase, Nuclear cytoplasmic O-GlcNAcase and acetyltransferase, NCOAT, HEXC, MGEA5, MEA5)
Recommended in vitro assay concentration	Use at concentration up to 10 μ M for JNJ-65355394 and JNJ-73924149; use with control and orthogonal probe for best interpretation of data
Suitability for <i>in</i> vivo use and recommended dose	JNJ-65355394 blocks OGA in mouse brain after single p.o. gavage administration (100 mg/kg).
Publications	WO2018109202A1
Orthogonal chemical probes	TP-040
In vitro assay(s) used to characterise	Fluorescence-based enzymatic assay
Cellular assay(s) for target-engagement	Cell-based OGA assay

Chemical Probe & Negative Control Structures and Use

JNJ-65355394 Chemical Probe

SMILES: CC(Nc1ncc(CN2CCC[C@H](Cc3cc(C)nc(C)c3)C2)s1)=O InChiKey: CYFBRQHYEQKYHH-MRXNPFEDSA-N

Molecular weight: 358.18 g/mol


Storage: As a dry powder or as DMSO stock solutions (10 mM) at -20 °C. DMSO stocks beyond 3-6 months or 2 freeze/thaw cycles should be tested for activity before use

Dissolution: Soluble in DMSO up to 10 mM; use only 1 freeze/thaw cycle per aliquot

Chemical Probe Profile

In vitro Potency & Selectivity:

JNJ-73924149 Negative Control

SMILES: CC(Nc1nc(CN2CCC[C@H](Cc3cc(C)nc(C)c3)C2)cs1)=O InChiKey: VKYYOTCDIVOPRO-MRXNPFEDSA-N Molecular weight: 358.18 g/mol Storage: As a dry powder or as DMSO stock solutions (10 mM) at -20 °C. DMSO stocks beyond 3-6 months or 2 freeze/thaw cycles should be tested for

activity before use Dissolution: Soluble in DMSO up to 10 mM; use only 1 freeze/thaw cycle per

JNJ-65355394 shows potent activity on OGA in a fluorescence-based enzymatic assay ($IC_{50} = 1.3 \text{ nM}$) and no activity on HEXA ($IC_{50} > 10 \mu$ M). Closest hits in the CEREP panel (54 at 10 μ M) are [% inhibition]: rat OPRK1 (78), rat ADORA2A (69) and human OPRM1 (55).

aliquot

Potency in Cells and Cellular Target Engagement:

JNJ-65355394 is active in a cell-based OGA assay (human OGA IC_{50} = 3.9 nM).