JP3000: A Chemical Probe for RXR

Version 1.0 (25th October 2023)

Web link for more details: https://www.sgc-ffm.uni-frankfurt.de/#!specificprobeoverview/JP3000

Overview

The nuclear retinoid X receptors (RXRA, RXRB, RXRG) regulate gene expression in response to ligands like 9-cis retinoic acid and other fatty acids. Due to their central role as universal heterodimer partner in nuclear receptor regulation, RXRs are widely distributed over all tissues and linked to multiple pathologies including metabolic and inflammatory diseases, cancer and neurodegeneration.

Summary

Chemical Probe Name	JP3000
Negative control compound	JP3001
Target(s) (synonyms)	RXRA, RXAB, RXRG
Recommended <i>in vitro</i>	Use at concentration of 0.1 to 1 μ M for JP3000 and JP3001; use with control
assay concentration	for best interpretation of data
Suitability for <i>in</i> vivo use	Not tested in vivo
and recommended dose	
Publications	None at time of publication
In vitro assay(s) used to	ITC
characterise	
Cellular assay(s) for target-	Hybrid reporter gene assay, full-length RXR reporter gene assay
engagement	

Chemical Probe & Negative Control Structures and Use

JP3000 Chemical Probe

FF

 $\label{eq:SMILES:C1C(C1c1nc(c2cccc2)c(c2cc(cc)C(F)(F)F)C(F)(F)F)o1)C(O)=OINChiKey: CRLZRGXSDBAEFD-UHFFFAOYSA-N$

Molecular weight: 441.08 g/mol

Storage: As a dry powder or as DMSO stock solutions (10 mM) at -20 $^{\circ}$ C. DMSO stocks beyond 3-6 months or 2 freeze/thaw cycles should be tested for activity before use

Dissolution: Soluble in DMSO up to 10 mM; use only 1 freeze/thaw cycle per aliquot

JP3001 Negative Control

 $\textbf{SMILES} : \ \texttt{C1C(CO)C1c1nc(c2ccccc2)c(c2cc(cc(c2)C(F)(F)F)C(F)(F)F)o}$

InChikey: GQHICRTXIJFNDS-UHFFFAOYSA-N

Molecular weight: 427.10 g/mol

Storage: As a dry powder or as DMSO stock solutions (10 mM) at -20 °C. DMSO stocks beyond 3-6 months or 2 freeze/thaw cycles should be tested for activity before use

Dissolution: Soluble in DMSO up to 10 mM; use only 1 freeze/thaw cycle per aliquot

Chemical Probe Profile

Selectivity:

JP3000 shows a K_D < 10 nM in the ITC assay for RXRA. A panel with 27 related nuclear receptors at 1 μ M (in-house panel) is clean with > 100-fold selectivity.

Potency in Cells and Cellular Target Engagement:

The Hybrid reporter gene assay yields the following data: $EC_{50} = 5 \pm 1$ nM (38 \pm 1-fold) for RXRA, $EC_{50} = 1.4 \pm 0.4$ nM (69 \pm 3-fold) for RXRB and $EC_{50} = 4 \pm 1$ nM (24 \pm 1-fold) for RXRG. The full-length RXR reporter gene assay results in $EC_{50} = 2.6 \pm 0.3$ nM for the RXR:RXR homodimer and $EC_{50} = 29 \pm 2$ nM for the RXR:RAR heterodimer. The induction of RXR-regulated gene expression (GDE1) shows an $EC_{50} \approx 10$ nM (qRT-PCR).