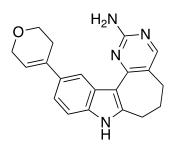
SGC-PI5P4Ky/MYLK4-1: A Chemical Probe for PI5P4Ky and MYLK4

Version 1.0 (11th October 2021)

Web link for more details: https://www.thesgc.org/chemical-probes/SGC-PI5P4Kgamma_MYLK4-1

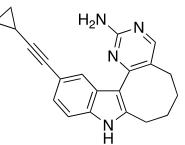
Overview


Phosphatidylinositol-5-phosphate 4-kinase gamma (PI5P4Ky), which phosphorylates phosphatidylinositol-5monophosphate (PI(5)P), and myosin light chain kinase family member 4 (MYLK4). PI5P4Ky is an understudied human lipid kinase with described roles in inflammation, T cell activation, autophagy regulation, immunity, heart failure, and multiple cancers. MYLK4 is also a poorly characterized human kinase. To provide a high-quality chemical tool that would enable additional characterization of these proteins, we designed and evaluated a potent, selective, and cell-active inhibitor of human PI5P4Ky and MYLK4. Based on our results in orthogonal assay formats reliant on competition with an ATP-competitive reagent, ATP titration studies, and published co-crystal structures with structurally related compounds, we hypothesize that our probe binds in the ATP active site of PI5P4Ky.

Summary

Chemical Probe Name	SGC-PI5P4Ky/MYLK4-1
Negative control compound	SGC-PI5P4Ky/MYLK4-1N
Target(s) (synonyms)	PI5P4Ky and MYLK4
Recommended cell assay concentration	Use at concentration of 1 μ M (and \leq 5 μ M) for SGC- PI5P4Ky/MYLK4-1 and SGC-PI5P4Ky/MYLK4-1-1N; use with control for best interpretation of data.
Suitability for <i>in</i> vivo use and recommended dose	SGC-PI5P4Ky/MYLK4-1 was not tested in vivo
Publications	10.1016/j.crchbi.2022.100036;
	10.1101/2022.09.08.507203
Orthogonal chemical probes	
In vitro assay(s) used to characterise	Binding and radiometric enzymatic assays
Cellular assay(s) for target-engagement	NanoBRET

Chemical Probe & Negative Control Structures and Use


SGC-PI5P4Ky/MYLK4-1: Chemical Probe

SMILES: NC1=NC2=C(CCCC3=C2C4=C(C=CC(C5=CCOCC5)=C4)N3)C=N1 InChiKey: VGFHPNRWHOQLEB-UHFFFAOYSA-N Molecular weight: 332.41 Storage: Stable as a solid at room temperature. DMSO stock solutions (up to 10 mM) are stable at -20°C.

Dissolution: Soluble in DMSO up to 10 mM

SGC-PI5P4Ky/MYLK4-1N: Negative Control

SMILES: NC1=NC2=C(CCCCC3=C2C4=C(C=CC(C#CC5CC5)=C4)N3)C=N1 InChiKey: ZPQLOIBNJAOMDO-UHFFFAOYSA-N Molecular weight: 328.42 Storage: Stable as a solid at room temperature. DMSO stock solutions (up to 10 mM) are stable at -20°C.

Dissolution: Soluble in DMSO up to 10 mM

Chemical Probe Profile

In vitro Potency & Selectivity:

SGC-PI5P4Ky/MYLK4-1 was profiled in the DiscoverX *scan*MAX assay against 403 wild-type kinases at 1 μ M. Only 7 kinases showed PoC <10 giving an S₁₀(1 μ M) = 0.017. When the PoC <35 fraction was examined, 10 kinases were included (S₃₅(1 μ M) = 0.025). Potential off-targets within the S₃₅(1 μ M) fraction were tested via biochemical enzymatic or binding assays plus

NanoBRET target engagement assays for PIKfyve, MYLK4, PI5P4Ky, DYRK1A, and CLK2. SGC-PI5P4Ky/MYLK4-1 binds to PI5P4Ky with PoC = 1.7 in the PI5P4Ky DiscoverX binding assay and demonstrated K_d = 19 nM in the same PI5P4Ky DiscoverX binding assay (Eurofins DiscoverX). PIKfyve, MYLK4, DYRK1A, and CLK2 are off-target kinases that demonstrate enzymatic IC₅₀ values within 30-fold of the PI5P4Ky K_d value: PIKfyve IC₅₀ = 12 nM, MYLK4 IC₅₀ = 12 nM, CLK2 IC₅₀ = 370 nM, and DYRK1A IC₅₀ = 520 nM. No other S₃₅(1 μ M) kinases demonstrated IC₅₀ values within 30-fold of the PI5P4Ky K_d value.

Potency in Cells and Cellular Target Engagement:

SGC-PI5P4Ky/MYLK4-1 displayed an IC₅₀ = 67 nM in the PI5P4Ky NanoBRET assay, IC₅₀ = 14 nM in the MYLK4 NanoBRET assay, IC₅₀ = 450 nM in the PIKfyve NanoBRET assay, IC₅₀ = 3200 nM in the CLK2 NanoBRET assay, and IC₅₀ > 10000 nM in the DYRK1A NanoBRET assay using HEK293 cells.

Our PI5P4Ky/MYLK4 chemical probe was found to increase mTORC1 signaling in MCF-7 cells. Phosphorylation of p70-S6K was increased in a dose-response manner 48h after treatment. The negative control did not impact mTORC1 signaling. No associated toxicity was observed due to probe or negative control treatment.