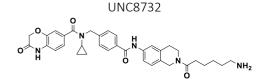
UNC8732: A chemical probe (degrader) for NSD2.

Version 1.0 (28st January 2024)

Web link for more details: https://www.thesgc.org/chemical-probes/UNC8732


Overview

SGC in collaboration with <u>Professor Lindsey Ingermann James</u> at the University of North Carolina has developed a degrader-based chemical probe for NSD2.

Summary

Chemical Probe Name	UNC8732
Negative control compound	UNC8884
Target(s) (synonyms)	NSD2
Recommended concentration for cellular use	≤ 10 µM; recommend researchers perform a doseresponse as different cell lines may require different concentrations. Use with negative control for best interpretation of data
Suitability for in vivo use and recommended dose	This chemical probe was not tested for in vivo use.
Publications	Prerequisite to the probe: https://doi.org/10.1021/jacs.3c01421
Orthogonal chemical probes	
In vitro assay(s) used to characterise	SPR, BLI, DSF, HDX
Cellular assay(s) for target-engagement	NanoBRET, in cell western, BioID, global proteomics
Chemical Probes.org	

Chemical Probe & Negative Control Structures and Use

SMILES:

O = C(NC1 = CC = C(C(CC2) = C1)CN2C(CCCCCN) = O)C3 = CC = C(C = C3)CN(C(C4 = CC(CC5) = C(C = C4)NC5 = O) = O)C6CC6

InChiKey: CSTHTJLTORVUST-UHFFFAOYSA-N

Molecular weight: 609.7

Storage: As a dry powder or as DMSO stock solutions (10 mM) at -20 $^{\circ}$ C. DMSO stocks beyond 3-6 months or 2 freeze/thaw cycles should be tested for activity before use

Dissolution: Soluble in DMSO up to 50 mM; use only 1 freeze/thaw cycle per aliquot

UNC8884

SMILES:

O=C(NC1=CC=C(C(CC2)=C1)CN2C(CCCCCN)=O)C3=CC=C(C=C3)CN(C(C4=CC(OC5)=C(C=C4)NC5=O)=O)C(C)C

InChiKey: RNMKSPMOWMAMPV-UHFFFAOYSA-N

Molecular weight: 611.7

Storage: As a dry powder or as DMSO stock solutions (10 mM) at -20 °C. DMSO stocks beyond 3-6 months or 2 freeze/thaw cycles should be tested for activity before use

Dissolution: Soluble in DMSO up to 50 mM; use only 1 freeze/thaw cycle per aliquot

Chemical Probe Profile

In vitro (cell-free) Potency & Selectivity: the potency is inferred from degradation; selectivity is inferred from chemoproteomics dataset for UNC8153 $\underline{\text{https://doi.org/10.1021/jacs.3c014211}}$.

Potency in Cells and Cellular Target Engagement: UNC8732 degrades NSD2 with DC50 of 60 nM (Dmax = 97%)